Under the patronage of H.E. Dr. Abdullah Belhaif Al Nuaimi - Minister of Infrastructure Development



► 17<sup>th</sup> Edition

International Operations & Maintenance Conference in the Arab Countries

19, 20, 21 NOV 2019

Le Meridien Dubai Hotel & Conference Centre United Arab Emirates

Under the Theme: Enhancing Maintenance Through Big Data Management  Environmental Economic Dispatch of Thermal Power Plants in Saudi Arabia: A Case Study

### INTRODUCTION

- The world demand for electricity is increasing in exponential manner with population
- There are more than 7.8 billion people now on the planet (Fig.1)

### **INTRODUCTION**

#### **World Population**



### INTRODUCTION



# لۇلىق VISION 2

KINGDOM OF SAUDI ARABIA

### **Environment Issues**

- CO<sub>2</sub> and NO<sub>x</sub> effects
- Health Issues
- Environmental Issues

### Vision 2030

- Decrease consumption of oil
- Renewable Energy

### The problem is to minimize the total fuel cost

$$\sum_{i=1}^{n} C_i = \sum_{i=1}^{n} a_i P_i^2 + b_i P_i + c_i$$

Where

| $C_i$                | Fuel cost of power plant i          |
|----------------------|-------------------------------------|
| $a_i, b_i$ and $c_i$ | Cost coefficients of power plant i  |
| n                    | Number of controllable power plant. |
| $P_i$                | Power output of power plant i       |

### **Equality constraints**

$$P_T = P_D + P_{loss}$$

Where

 $P_T$ Total generated power  $P_{loss}$ Transmission Loss  $P_D$ 

Total Load Demand

### **Inequality constraints**

 $P_{i,min} \leq P_i \leq P_{i,max}$ 

### Transmission Loss can be found by

$$P_{loss} = \sum_{i=1}^{n} \sum_{j=1}^{n} P_i B_{ij} P_j$$

Where

- *P*<sub>i</sub> Power output of power plant i
- *P*<sub>j</sub> Power output of power plant j

*B<sub>ij</sub>* Losses Matrix

The input is the system load demand and the output is economic power generation and environmental emissions of various power plants

### For CO<sub>2</sub> Constraints

$$\sum_{i=1}^{n} E1_{i} = \sum_{i=1}^{n} d1_{i}P_{i}^{2} + e1_{i}P_{i} + f1_{i}$$

Where

 $E1_i$  $d1_i$ ,  $e1_i$  and  $f1_i$  Total emission of  $CO_2$  for power plant i  $CO_2$  emission coefficients of power plant i

### For NO<sub>x</sub> constraints

$$\sum_{i=1}^{n} E2_{i} = \sum_{i=1}^{n} d2_{i}P_{i}^{2} + e2_{i}P_{i} + f2_{i}$$

Where

 $E2_i$  $d2_i$ ,  $e2_i$  and  $f2_i$  Total emission of  $NO_x$  for power plant i  $NO_x$  emission coefficients of power plant i

#### Total augmented cost can be obtained by

$$\sum_{i=1}^{n} Ct_{i} = \sum_{i=1}^{n} (w_{1}C_{i} + w_{2}E1_{i} + w_{3}E2_{i})$$

Different emission conditions may occur by varying  $W_1$ ,  $W_2$  and  $W_3$  as

| <b>W</b> <sub>1</sub> | <b>W</b> <sub>2</sub> | W <sub>3</sub> | Dispatch Type                                                                                       |  |  |  |
|-----------------------|-----------------------|----------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| 1                     | 0                     | 0              | Economic Dispatch (ED)                                                                              |  |  |  |
| 0                     | 1                     | 0              | Environmental Dispatch with CO <sub>2</sub> Emission<br>Constraints (ED - CO <sub>2</sub> emission) |  |  |  |
| 0                     | 0                     | 1              | Environmental Dispatch with NO <sub>x</sub> Emission<br>Constraints (ED - NO <sub>x</sub> emission) |  |  |  |
| 0.5                   | 0.25                  | 0.25           | Combined Environmental Economic Dispatch<br>(EED)                                                   |  |  |  |

## ENVIRONMENTAL ECONOMIC DISPATCH ALGORITHM

# For The sequence of major computations of the algorithm is as follows:

i. Get the total load demand data

ii. Assume the load demand is distributed equally among all the thermal plants and there are no losses and set the Lagrange multiplier  $\frac{dC}{dP} = \lambda$ 

iii. Calculate the Pi of each power plant by using the coordination equation

$$\frac{dC}{dP_i} + \lambda \frac{\partial P_{loss}}{\partial P_i} = \lambda$$

## ENVIRONMENTAL ECONOMIC DISPATCH ALGORITHM

iv. Check the inequality by  $P_{i.min} \le P_i \le P_{i,max}$ 

v. Calculate the power loss by

vi. Check if 
$$\left|\sum P_i - (P_D + P_{loss})\right| < \varepsilon$$

Where  $\varepsilon$  is the assigned tolerance. If Yes, proceed to print the results; If No, modify the value of  $\lambda$  and go back to step – iii.

#### **System Data: Power plants and the Loss Coefficients**

| Power<br>Plant no. | а        | b       | с       | P min (MW) | P max (MW) |
|--------------------|----------|---------|---------|------------|------------|
| 1                  | 0.001540 | 8.2716  | 225.360 | 1384       | 5538       |
| 2                  | 0.000950 | 9.2233  | 253.050 | 381        | 1527       |
| 3                  | 0.012490 | 11.8000 | 153.330 | 103        | 412        |
| 4                  | 0.000885 | 8.8167  | 197.050 | 171        | 684        |
| 5                  | 0.011040 | 7.7918  | 201.280 | 420        | 1680       |
| 6                  | 0.050400 | 7.9664  | 217.110 | 206        | 827        |
| 7                  | 0.016280 | 7.8225  | 213.440 | 123        | 494        |

### **CO<sub>2</sub> Emissions Coefficients**

| Power Plant no. | d <sub>1</sub> | e <sub>1</sub> | f <sub>1</sub> |
|-----------------|----------------|----------------|----------------|
| 1               | 0.2651         | -61.02         | 5080.148       |
| 2               | 0.1401         | -29.952        | 3824.77        |
| 3               | 0.1059         | -9.5528        | 1342.851       |
| 4               | 0.1064         | -12.736        | 1819.625       |
| 5               | 0.1059         | -9.5528        | 1342.851       |
| 6               | 0.4031         | -121.98        | 11381.07       |
| 7               | 0.1064         | -12.736        | 1819.625       |

### **NO<sub>x</sub> Emissions Coefficients**

| Power Plant | d <sub>2</sub> | e <sub>2</sub> | f <sub>2</sub> |  |
|-------------|----------------|----------------|----------------|--|
| 1           | 0.006323       | -0.38128       | 80.90          |  |
| 2           | 0.006480       | -0.79027       | 28.82          |  |
| 3           | 0.003174       | -1.36061       | 324.20         |  |
| 4           | 0.006732       | -2.39928       | 610.30         |  |
| 5           | 0.003174       | -1.36061       | 324.20         |  |
| 6           | 0.006181       | -0.39077       | 50.81          |  |
| 7           | 0.006732       | -2.39928       | 610.30         |  |

#### The Losses matrix **B**

|                 | ſ 2.0  | 1.0   | 0.15  | 0.005 | 0.001 | -0.03 | ן 0.02 |
|-----------------|--------|-------|-------|-------|-------|-------|--------|
|                 | 1.0    | 3.0   | -0.02 | 0.01  | 0.012 | 0.01  | -0.1   |
|                 | 0.15   | -0.02 | 0.1   | -0.1  | 0.1   | 0.001 | 0.04   |
| $B = 10^{-5} *$ | 0.005  | 0.01  | -0.1  | 15.0  | 0.06  | 5.0   | 0.15   |
|                 | 0.001  | 0.012 | 0.1   | 0.06  | 0.4   | 2.0   | 0.01   |
|                 | -0.03  | 0.01  | 0.001 | 5.0   | 2.0   | 0.5   | 0.4    |
|                 | L 0.02 | -0.1  | 0.04  | 0.15  | 0.01  | 0.4   | 0.1    |

## **>>** ANNUAL COST AND EMISSION RESULTS

|                                       | Economic Dispatch |            |                                         |             | Environmental Economic Dispatch |          |                                         |                   | %<br>Difference<br>in Annual<br>Estimates |
|---------------------------------------|-------------------|------------|-----------------------------------------|-------------|---------------------------------|----------|-----------------------------------------|-------------------|-------------------------------------------|
|                                       | Typical Day       |            | Total Annual<br>Estimate in<br>millions | Typical Day |                                 |          | Total Annual<br>Estimate in<br>millions | [(A-B)/A]<br>*100 |                                           |
|                                       | Winter            | Summer     | During Hajj                             | (A)         | Winter                          | Summer   | During Hajj                             | (B)               |                                           |
| uel Cost<br>(SR/h)                    | 152686.6          | 339077.3   | 337047.1                                | 2392.8      | 153137.3                        | 400678   | 398166                                  | 2748.9            | 14.88                                     |
| CO <sub>2</sub><br>Emission<br>(kg/h) | 2088059.8         | 11036398.0 | 10972840.9                              | 69583.2     | 202044                          | 5206331  | 5299453.9                               | 35807.3           | 48.54                                     |
| NO <sub>x</sub><br>Emission<br>(kg/h) | 68151.3           | 308328.9   | 306746.9                                | 1972.2      | 64426.0                         | 165229.2 | 167374.61                               | 1137.2            | 42.34                                     |

### **INVESTIGATION RESULTS**

#### **Fuel Cost (SR)**



### **>>** SIMULATION RESULTS





Millions

NO<sub>x</sub> Emission (kg)

## **CONCLUSION**

- This paper has discussed a case study of the application of environmental economic dispatch on the Saudi Western Operating Grid having seven thermal power plants.
- The environments constraints on CO<sub>2</sub> and NO<sub>x</sub> have been considered
- It can be seen that EED leads significant reduction in the environmental pollution without any major increase in the cost

# **Thank You**